水中二氯乙酸、三氯乙酸检测方法初探

水质监测中心 骆鹏

- •1背景介绍
- 2 原理
- 3 检测方法
- 4验证实验
- 5不同仪器方法比较

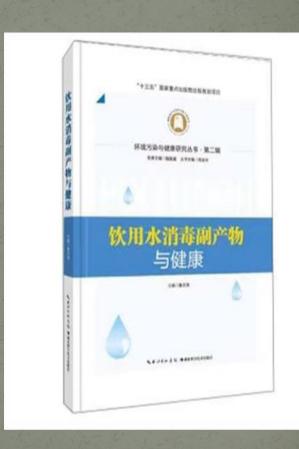
背景介绍

• 消毒副产物(disinfection by-products, DBPs)是指对饮用水进行消毒时,消毒剂与水中含有的天然有机物反应生成的一系列化合物。随着人们健康意识的提高,饮用水消毒副产物的毒性及对健康的影响日益引起人们的关注。

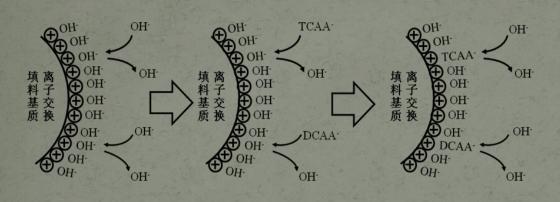
卤乙酸为乙酸甲基上的三个氢被氯、溴 等卤素原子取代的氯消毒副产物,可引 起DNA损伤,导致遗传毒性,是饮用水 监测中被广泛关注的消毒副产物。

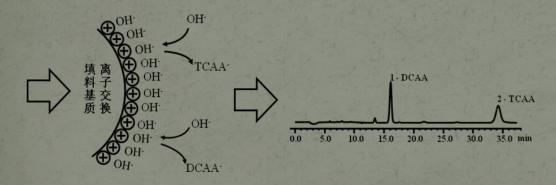
国标限值

•二氯乙酸 (DACC),三氯乙酸 (TACC)是水源水在氯化消毒过程中产生的消毒副产物,因其对人体具有潜在的致癌风险,《生活饮用水卫生规范》(GB/T5749-2006)中二氯乙酸和三氯乙酸的允许浓度为别是0.05和0.10mg/L.



国内外相关分析方法的研究现状


- 一类为衍生—气相色谱法,包括衍生—GC-ECD法、衍生—GC-MS等。衍生法具有灵敏度高、准确性好、检测限低等优点,但由于衍生试剂具有毒性、致癌性,对实验操作人员的身体健康构成巨大危害,因此方法的使用受到一定的限制。
- 另一类测定的方法为直接测定法,包括液相色谱法、离子色谱法、毛细管电泳法和电喷雾离子化质谱法等。


方法制定的意义和目标

用离子色谱法检测饮用水色谱法检测饮用直接物质,可直接,可直接,可直接。一氯样,可含生化。一二进,发生化。一二进,发生化。一二进,发生人。一二进,发生人。一二进,发生人。一二进,发生人。一二进,发生人。一二进,发生人。一二进,发生人。一二进,发生人。一二进,发生人。一二进,发生人。一二进,发生人。一二进,发生人。一二进,发生人。一二进入。一二进入。一二进入。一二进入。一二进入。一二进入的人。一二进入。

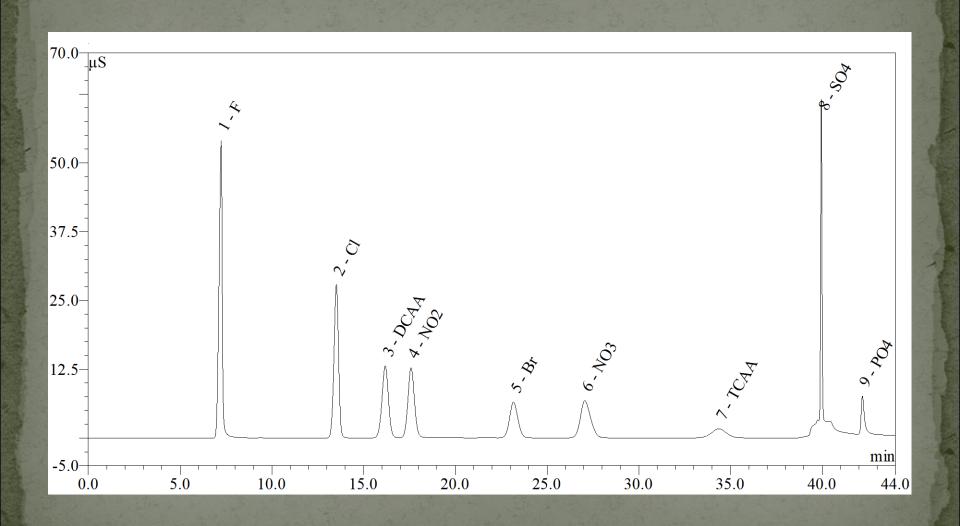
仪器分析原理

原理

• 水样中待测阴离子随淋洗液进入离子交换分离柱系统 (由保护柱和分离柱组成),由于分离柱对不同阴离 子的亲和度存在差异,因而,在淋洗液的不断淋洗作 用下,待测阴离子按照亲和度的差异得到顺序洗脱分 离。抑制器系统中以氢离子选择性地将淋洗液中的阳 离子交换除去, 淋洗液则转变为弱电导度的水, 大大 降低了基线背景; 已分离的阴离子与氢离子结合, 转 换成具高电导度的强酸,提高了待测阴离子的响应值。 最后由电导检测器测量顺序流出的各组分电导率,以 相对保留时间定性,蜂高或蜂面积定量。

检测方法----实验条件的选择

- 色谱柱的选择--4种色谱柱
- 色谱条件的优化--淋洗液,梯度
- 样品基质效应的消除--氯离子,硫酸根,温度


实验条件的选择

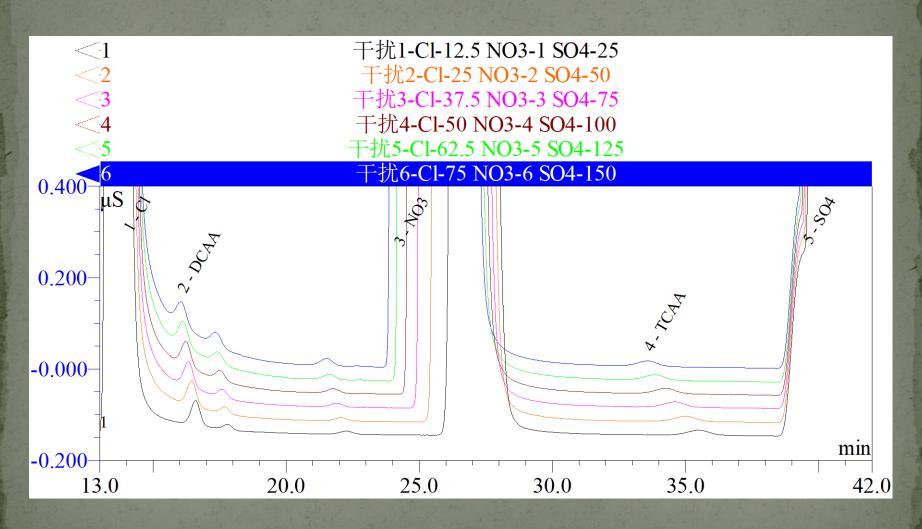
- 色谱柱的选择
- AS11-HC是比较常见的高容量阴离子交换分离柱,在该色谱柱上二氯乙酸与硝酸盐和溴化物存在共淋洗现象。
- IonPac AS15分离柱三氯乙酸的保留时间更是超过1小时。
- IonPac AS16是一款强亲水性的高容量阴离子交换色谱柱。采用直接电导法检测时,自来水中高浓度的硫酸盐和碳酸盐对三氯乙酸的检出存在一定程度的干扰。

色谱柱的选择

- IonPac AS19是一款高容量、氢氧根选择性的高效 阴离子交换色谱柱,适合于检测饮用水、地表水 和废水等多类样品基体中的卤氧化物和常见无机 阴离子(氟离子、亚氯酸盐、溴酸盐、氯化物、 亚硝酸盐、氯酸盐、溴化物、硝酸盐、硫酸盐、 磷酸盐和卤乙酸等)。
- ·综合考虑样品分析时间和待测物质的分离度等因素, IonPac AS19最适合用于自来水样品中二氯乙酸、三氯乙酸的分离分析。

AS19色谱柱二氯乙酸、三氯乙酸分离谱图

检测方法-----色谱条件的优化(淋洗液, 梯度)


淋洗液梯度

· 方法选用OH-体系淋 洗液

• 选用梯度淋洗

时间(min)	KOH浓度 (mmol/L)
0	8
35	8
35.1	50
43	50
43.1	8
48	8

检测方法---样品基质效应的消除(氯离子)

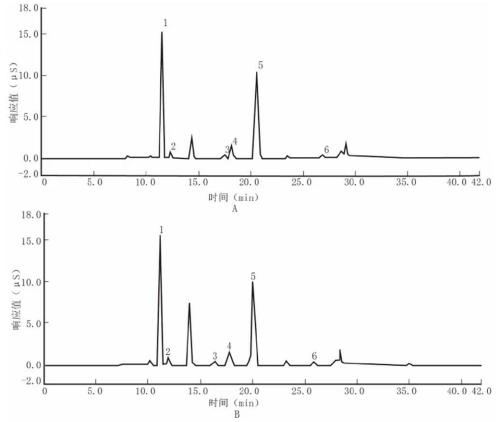
样品基体对检测的影响

	20 Line 1	加标二氯乙酸和三	氯乙酸各10.0μg/L	明 一
基体浓度	二氯乙酸	平均回收率	三氯乙酸	平均回收率
	μg/L	%	μg/L	%
Cl ⁻ (12.5mg/L)	9.93	A TO ST.	9.56	10000 200
NO ₃ -(1.0mg/L)	9.88	98.9	10.01	98.6
SO ₄ ² -(25.0mg/L)	9.87	THE THE THE	10.02	
Cl ⁻ (25.0mg/L)	9.81	16 18 18 18 18	9.98	
NO ₃ -(2.0mg/L)	9.78	98.0	10.27	100.3
SO ₄ ² -(50.0mg/L)	9.80	The state of the s	9.83	the party and the
Cl ⁻ (37.5mg/L)	9.78	1437 7 284.3	10.21	24 22
NO ₃ -(3.0mg/L)	9.72	96.9	10.14	101.3
SO ₄ ² -(75.0mg/L)	9.57	进业中,中,	10.04	100 11-00
Cl ⁻ (50.0mg/L)	9.59	The state of the s	9.92	The second
NO ₃ -(4.0mg/L)	9.56	95.4	9.72	99.1
SO ₄ ² -(100.0mg/L)	9.49	The state of the s	10.09	2000
Cl ⁻ (62.5mg/L)	9.23	The state of the state of	10.17	The state of the state of
NO ₃ -(5.0mg/L)	9.16	91.6	9.53	97.9
SO ₄ ² -(125.0mg/L)	9.10	15 5 6- 11	9.67	100000000000000000000000000000000000000
Cl ⁻ (75.0mg/L)	9.23	1000	9.86	The state of the state of the state of
NO ₃ -(6.0mg/L)	9.16	88.2	9.55	96.4
SO ₄ ²⁻ (150.0mg/L)	9.10		9.51	

消除干扰后加标10.0μg/L二氯乙酸回收结果

William Co. Co.	to the first the state of	The state of the s	per la reconstruction of the						
	消除干扰后检测结果								
基体浓度	加标浓度	检出浓度	平均值	平均回收率					
	10.0μg/L	μg/L	μg/L	%					
Cl ⁻ (50.0mg/L)		9.61	4 18 - 33 4	Maria Company					
NO ₃ -(4.0mg/L)	10.0	9.67	9.64	96.4					
SO ₄ ² -(100.0mg/L)		9.64	4.36	August Coll.					
Cl ⁻ (62.5mg/L)		9.67	The transfer of						
NO ₃ -(5.0mg/L)	10.0	9.69	9.67	96.7					
SO ₄ ² -(125.0mg/L)		9.64	B. A. L. C.						
Cl ⁻ (75.0mg/L)		9.70		The second second					
NO ₃ -(6.0mg/L)	10.0	9.59	9.62	96.2					
SO ₄ ² -(150.0mg/L)		9.58							

样品基质效应的消除 -- 温度对分离的影响



结论

实验发现二氯乙酸、三氯乙酸在分离过程中,保留时间受温度变化的影响较大,随着柱温的增加,两者的保留增强。随着柱温的增加二氯乙酸与亚硝酸盐的离度减小,柱温超过30℃时,二氯乙酸与亚硝酸盐不能实现基线分离。但随着柱温的降低,二氯乙酸与氯离子的分离度减小,同时系统压力增大。以保证分离度为原则,兼顾系统操作压力不宜过大,最终选择室温23℃--28℃下完成该项目的检测

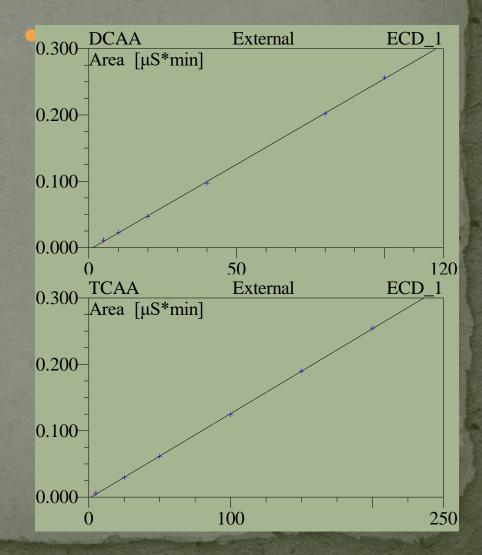
文献验证温 度的影响

注:图 A 柱温 30 ℃,图 B 柱温 25 ℃; 1: 亚氯酸盐; 2: 溴酸盐; 3: 二氯乙酸; 4: 亚硝酸盐; 5: 氯酸盐; 6: 三氯乙酸 图 1 五种消毒副产物及亚硝酸盐混合标准溶液色谱图

表 2 五种消毒副产物线性关系及检出情况

项目 线性范围 (mg/L) 线性方程 相关系数 (r) 检出限 $(\mu g/L)$ 定量下限 $(\mu g/L)$

检测方法


- 标准曲线
- 检出限
- 精密度
- 回收率

标准曲线

标准曲线

	The state of the s		474 77 77
卤乙酸	保留时间 (min)	R^2	线性范 围 µg/ L
二氯乙酸	18.3	0.9999	5~100
三氯乙酸	38.8	0.9999	5~200

检出限 精密度

- 检出限二氯乙酸0.23μg/L,三氯乙酸0.42μg/L
- 精密度二氯乙酸低浓度 RSD 0.93 %
 - 高浓度 RSD 0.28 %
- 三氯乙酸低浓度 RSD 2.6 %
- 高浓度 RSD 0.28 %

方法检出限:重复测定7次浓度各为5.0µg/L的二氯乙酸、三氯乙酸,计算其标准偏差SD,并按照公式计算MDL

精密度:按高、低两个浓度点(线性最高浓度的0.1 倍、0.9倍)的范围进行检测,各重复测定11次评价其标准偏差

回收率 (单位:%)

		二氯乙酯	Ż		三氯乙酯	Ż
	高浓 度	中浓度	低浓度	高浓 度	中浓度	低浓 度
自来水	96. 2	100.1	99. 4	98. 1	104.5	96. 0
纯水	97.6	98. 5	97. 6	96. 2	100.2	95. 0

在纯水及实际水样中加入二氯乙酸、三氯乙酸标准5.0μg/L,10.0μg/L,50.0μg/L,每个浓度分别进行7次测定

方法验证

- 参加验证单位有国家城市供水监测网西安监测站, 太原监测站,长沙监测站,广州监测站,佛山监测站,上海监测站,武汉监测站,济南监测站, 大连监测站,福州监测站,厦门监测站11家通过计量认证的实验室。
- 验证内容包括:仪器参数、标准曲线、方法检出限、方法精密度、实际样品检测、实际样品加标回收。

仪器信息汇总

验证单位	2	5	7	3	6	1	10	4	8	9	11
仪器型号	ICS-1500		ICS	2500 ICS-1000		ICS-2000	ICS-3	8000	DX-120		
色谱柱型号	AG19-AS19										
淋洗系统	КОН										CO ₃ ² -

标准曲线 线性关系验证数据汇总

在本检验方法所确定的实验条件下,取一系列标准溶液以外标定量法做工作曲线,R²都大于0.999,表明各二氯乙酸在5.0μg/L~100μg/L,三氯乙酸在5.0μg/L~200μg/L范围内呈现良好的线性关系。

方法检出限 (MDL) 验证结果汇总 单位: μg/L

	验证单位	1	2	3	4	5	6	7	8	9	10
A STATE OF THE PARTY OF THE PAR											
	二氯乙酸	0.38	0.21	0.61	0.28	1.84	0.43	0.24	0.28	0.10	0.46
	三氯乙酸	0.38	0.24	0.87	0.33	1.43	0.64	0.45	0.36	0.46	0.59

相对标准偏差 (RSD) 汇总 单位: %

		2000		2000		The same of the sa	Marine Company	1000	2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ALL DAY DO NOT THE REAL PROPERTY.
验证单位	1	2	3	4	5	6	7	8	9	10
二氯乙酸				4						
(低浓度)	1.80	0.39	1.07	4.42	7.87	2.04	1.61	1.52	1.35	2.71
			1	1.81			1 1 1-	, the		
三氯乙酸 (低浓度)	1.05	0.33	3.30	1.96	0.34	1.66	0.50	1.03	0.97	1.34
		-	1	- Part		A TONE	7-17-63			
二氯乙酸 (高浓度)	0.31	0.53	0.41	0.41	0.62	2.11	1.77	0.51	0.52	1.35
						2				-
三氯乙酸 (高浓度)	0.14	0.56	0.43	0.21	1.22	0.64	0.33	0.27	0.76	0.78

纯水样加标结果汇总 单位:%

验证		氯乙酸回收率	조%	三氯乙酸回收率%			
单位	5.0μg/L	10.0μg/L	50.0μg/L	5.0μg/L	10.0μg/L	50.0μg/L	
1	101.0	99.4	98.7	99.7	100	93.6	
2	101.0	100.0	97.7	101.6	98.4	100.9	
3	107.4	105.4	101.4	112	106.4	99.0	
5	99	98.9	103.0	121.4	99.2	100.8	
6	105.2	97.2	96.5	103.6	98.2	94.3	
7	100.8	93.4	92.4	108.2	107	98.0	
8	102.8	97.0	97.0	103.8	98.9	97.5	
9	94.4	90.5	97.2	99.1	97.1	98.9	
10	105.4	105.1	95.6	106.2	104.1	105.6	

自来水样加标回收率结果汇总 单位:%

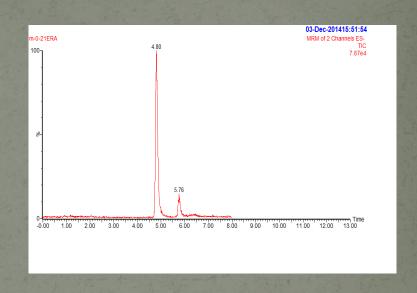
验证		二氯乙酸	二氯乙酸 三氯乙酸			
单位	5.0μg/L	10.0μg/L	50.0μg/L	5.0μg/L	10.0μg/L	50.0μg/L
1	98.3	104	104.0	102	96.3	100
2	107.2	106.1	100.5	107.8	93.9	96.7
3	113.8	106.3	101.4	105.2	102	105.4
5	81.6	102	95.4	121.6	109.6	95.9
6	104.2	101.6	94	105	105.4	95.6
7	104.8	92.1	88.4	107	105.2	97.4
8	99.5	97.9	98.3	106	102	101
9	100.1	83.4	87	122.4	100	98.5
10	93.6	95	94.1	104	103.9	95.6

方法验证结论

- 1检测过程中发现实际水样中的亚硝酸盐氮与二氯乙酸的分离受柱温影响较大,在温度在23-28度之间二者分离效果较好;
- 2 氯化物浓度对二氯乙酸回收率影响较大,水样氯化物浓度高时,需要使用onguard Ba/Ag/H柱去除氯化物干扰;
- 3 水样中较高浓度的碳酸根对三氯乙酸的测定会产生一定干扰,需要使用onguard Ba/Ag/H并添加CRD200二氧化碳去除装置对检测会有积极效果。
- 4碳酸盐体系受限于本底电导值较高,做较低浓度 (≤10μg/L) 样品可能会有一定偏差。

不同仪器方法比较

• 本方法与气相色谱法比较起来, 最大的优点就是节省了前处理步 骤,大大缩短了分析时间,提高 了效率。本方法可直接进水样, 不需要衍生化和富集、简便快速、 检测限低, 灵敏度高, 有较大的 实际意义,可用于饮用水中卤乙 酸的检测,为日常监测和饮用水 卤乙酸处理及健康风险评价提供 依据。



卤乙酸测定—液相色谱质谱法检测中问题 探讨

卤乙酸(HAAs)是饮用水或其它水体系中常见的有机污染物,是消毒杀菌过程中,消毒剂与水中的天然有机物(NOM)发生反应产生的一类消毒副产物(DBPs)

DBPs主要包括一氯乙酸 (MCAA)、二氯乙酸(DCAA)、三氯乙酸(TCAA)、一溴乙酸 (MBAA)、二溴乙酸(DBAA)、溴氯乙酸(BCAA)、一溴二氯乙酸(BDCAA)、二溴一氯乙酸 (CDBAA)、三溴乙酸(TBAA)九种。

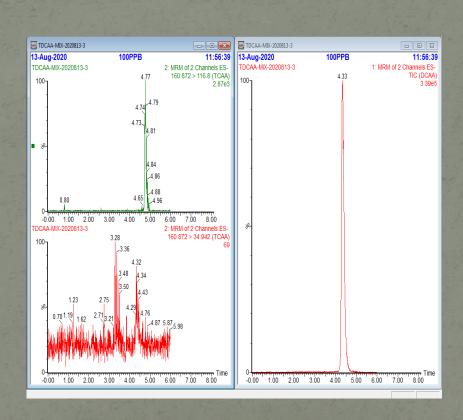
氯化消毒过程中DCAA和TCAA 所占比例最大。

GB/T 5750.10—2006《生活饮用水标准检验方法——消毒副产物指标》规定了DCAA和TCAA的限值分别为50μg/L和100μg/L

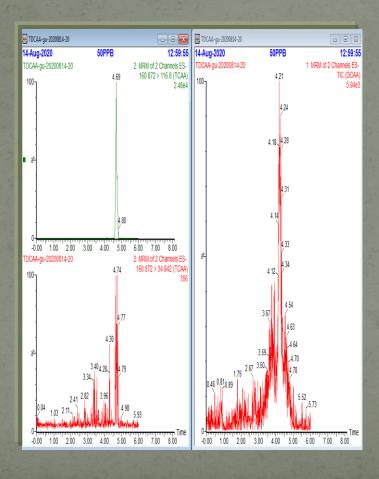
歯 乙酸

实验方案的建立

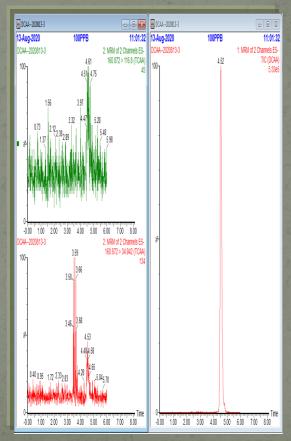
- 1人员仪器状态稳定。仪器流动相保持稳定状态,确认基线平稳
- 2 选取合适的标准物质,溶剂基质最好一致
- 3 设定标准物质溶液稀释倍数,尽量避免 多次转移
- 4 确定未知样的稀释倍数和溶剂状态,一步稀释到位。
- 5 配制 6-7个点系列涵盖未知样的范围


齿乙酸检测遇到的问题

实验前期需要注意:


- 1标准物质需要确认:是否存在水解问题,溶液基质
- 2选择合适的分离度好的色谱柱
 - 3 盲样的基质与标准是否一致

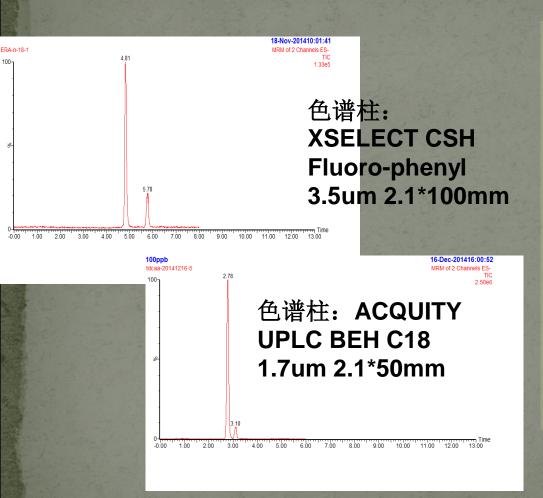
卤乙酸测定--液相色谱质谱法

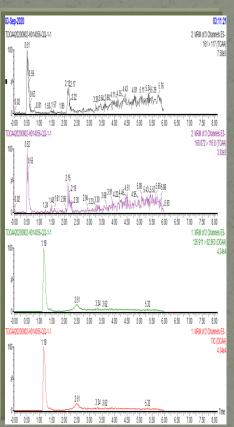

标准物质的水解问题---三氯乙酸转化为二氯乙酸

固体三氯乙酸配制的标准

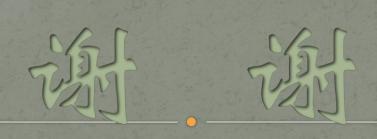
标准的转化 问题

色谱柱的的选择——更好的 分离




色谱柱: ACQUITY UPLC BEH C18 1.7um 2.1*50mm

色谱柱: XSELECT CSH Fluoro-phenyl 3.5um 2.1*100mm


> 色谱柱: Atlantis T3 5um C18 1.7um 2.1*150mm

色谱柱的的选择—更好的分离

色谱柱: Atlantis T3 5um C18 1.7um 2.1*150mm

